## RELATED RATES LADDER PROBLEM

The top of a ladder slides down a vertical wall at a rate of 0.15 m/s. At the moment when the bottom of the ladder is 3 m from the wall, it slides away from the wall at a rate of 0.2 m/s. How long is the ladder?

This is a fairly common example of a related rates problem and a common application of derivatives and implicit differentiation. I’m sure you may have come across a related rates ladder problem like this. If I can offer one piece of advice for this type of problem it’d be this: don’t use this ladder, it always falls…

Alright, bad jokes aside, this is going to follow the same 4 steps as all the other related rates problems I’ve done. If you’d rather watch a video, then check out my video below. But otherwise, let’s jump into it with the usual process!

## 1. Draw a sketch

As always, we’ll start by drawing a quick sketch of all of the information that is being described in the problem. To do this we should first think about what information we have. First of all, we need to think about the shape that’s being formed with the ladder.

Since the ladder is standing on the ground and leaning up against a vertical wall, we can say that a triangle would be formed by the 3 objects in the problem. More specifically we know that the vertical wall forms a 90 degree angle with the ground. Therefore, the triangle formed by the ground, the wall, and the ladder would be a right triangle.

On top of this, the problem also gives us a few pieces of information about the dimensions of the triangle and how they are changing. It actually tells us about how fast the ladder is moving, but since the ladder is what forms the triangle, we can deduce how the dimensions of the triangle are changing.

We are given 3 pieces of information about the position of the ladder as well as how the ladder is moving at the specific instant we are looking at.

• Bottom of the ladder is 3 m away from the wall.
• Top of the ladder is moving down the wall at a rate of 0.15 m/s.
• Bottom of the ladder is moving away from the wall at a rate of 0.2 m/s.

Adding these labels to our drawing from above would give us something like this:

This sketch gives us a pretty good idea of what is going on in this problem. Not only that, but we will be able to use this to get an idea of what kind of equation we will need to come up with.

## 2. Come up with your equation

Before we come up with our equation we want to sort through the information we are given and asked to find. This is important because we need to decide what measurements and variables we want in the equation.

#### What are we looking for?

The question asks us to find the length of the ladder. Therefore, we will need to find the length of the hypotenuse of the triangle in our drawing. Because of this we want to be sure to include the hypotenuse of our triangle in our equation.

#### What do we know about?

Looking back up at our labeled drawing, you can see that we really only have information about the bottom and side of our triangle. We know the length of the bottom side of the triangle and the rate of change of this side.

And we were also given information about the rate of change of the left side of the triangle. But remember that our equation in this step cannot include rates of change. Instead, the fact that we know this rate of change tells us that we can use the left side length of the triangle in our equation, not its rate of change.

We aren’t given any information about the angles in the triangle other than the fact that it’s a right triangle. As a result, we probably don’t want our equation to involve the angles of this triangle.

Since we know that our equation either needs to include, or can include the lengths of the sides of the triangle we should label them. Let’s go back to our drawing and label the side of the triangle. You can label them whatever you’d like, but I’ll go with x, y, and z.

#### Putting it into an equation

At this point we’ve figured out that we need an equation that related the sides of a right triangle.

What do you know about the relationship between the sides of a right triangle, but neither of the other two angles?

You’re probably thinking Pythagorean Theorem. If you are, you’re right! Pythagorean Theorem tells us that the square of the hypotenuse is equal to the sum of the squares of the other two sides of a right triangle. Remember this can only be applied to the sides of a right triangle, so noticing that is actually very important. In other words we know $$z^2=x^2+y^2.$$

## 3. Implicit differentiation

Now that we have come up with our equation, we need to apply implicit differentiation to take the derivative of both sides of our equation with respect to time.

$$\frac{d}{dt} \Big[ z^2 = x^2 + y^2 \Big]$$

Before we do this though I want to point something out. Let’s look at each of the letters in this equation and consider how we need to treat them when we differentiate with respect to time.

Consider z first. z represents the length of the hypotenuse of the triangle. This is the side that is formed by the ladder. As time changes what happens to the length of the ladder? Nothing. It doesn’t change at all. It’s constant. Therefore we can treat z like a constant. If z is a constant and never changes, then $z^2$ would be constant too. It doesn’t change as time changes.

So when we take the derivative of z with respect to time, the derivative will be 0. The derivative of any constant is 0.

Unfortunately x and y won’t be as convenient. Looking back at our drawings you can see that the sides labelled x and y are changing over time. As the ladder slides down and away from the wall, these two sides of the triangle change in length. Therefore, when we take the derivative of $x^2$ and $y^2$ we will need to treat x and y as functions of time. Doing this means that we will need to use the chain rule, where x and y are the inside function and they are being plugged into another function that squares them.

#### Back to the derivative

Knowing how to treat each letter in our equation, let’s go ahead and take the derivative of both sides with respect to time.

$$\frac{d}{dt} \Big[ z^2 = x^2 + y^2 \Big]$$ $$0 = 2x \frac{dx}{dt} + 2y \frac{dy}{dt}$$

## 4. Solve for the desired rate of change

Now all we need to do is plug in all of the information we have and solve for the right variable. However, this one is a little weird. The reason I say this is that we are actually not looking for a rate of change.

Remember the question told us to find the length of the ladder. Which means we need to find the value of z. The differential equation we just ended up with doesn’t even have a z in it, so how can we use it to find z?

Well, we’re actually going to need to go back to our original equation. $$z^2=x^2+y^2$$ We know the value of x based on information we were given, but we don’t know the value of y yet. If we could figure out what y was, then we could use this equation, plug in the value for x and y, then solve for z.

#### How do we find y?

This is what we will use our differential equation from the previous step for. That equation has a y in it, and we know the value of all the other variables.

• We are told that the moment we are considering is when the bottom of the ladder is 3 m from the wall. Since that corresponds to the side of our triangle labelled x, we know $\mathbf{x=3}$.
• We are also told that the ladder is moving away from the wall at a rate of 0.2 m/s. Therefore, x must be getting longer, or increasing, at that rate. So $\mathbf{\frac{dx}{dt}=0.2}$.
• And finally, the ladder is sliding down the wall at a rate of 0.15 m/s. So y must be getting shorter, or decreasing, at that rate. This means $\mathbf{\frac{dy}{dt}=-0.15}$.

#### Plugging it all into our equation

Knowing all of the values in our equation aside from y, we can plug these in and solve for y.

$$0 = 2x \frac{dx}{dt} + 2y \frac{dy}{dt}$$ $$0 = 2(3)(0.2) + 2y(-0.15)$$ $$0=1.2-0.3y$$ $$0.3y=1.2$$ $$y=4$$

Now that we know x and y, we can plug them back into our original equation and solve for z.

$$z^2=x^2+y^2$$ $$z^2=(3)^2+(4)^2$$ $$z^2=25$$ $$z=5$$

So the ladder must be 5 m long!

## L’HOSPITAL’S RULE – HOW TO – With Examples

L’Hospital’s Rule really just tells us one thing that makes evaluating certain limits a lot easier. Limits that meet 3 specific requirements can be made much simpler using L’Hospital’s Rule. First let me introduce L’Hospital’s Rule, then we can go over the 3 conditions that you need to check before you can apply it to any given limit.

## What does L’Hospital’s Rule tell us?

To find a limit of a function that is a fraction, we can take the derivative of the top of the fraction and the derivative of the bottom of the fraction and make a new fraction out of the derivatives.

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

Notice that we don’t use the quotient rule here. The reason for this is that we are taking the limit of this fraction and not taking the derivative of this fraction. The limit is the key piece that allows us to avoid the quotient rule and take the derivative of each piece of the fraction separately to create another limit that is equal to the original.

The hope is that the fraction resulting from the derivatives will be easier to evaluate than the original limit was.

## How do we know when to use L’Hospital’s Rule?

Before we can apply L’Hospital’s rule to any given limit, we need to confirm that these three conditions are met:

1. f(x) and g(x) are differentiable on some open interval that includes $\mathbf{x=a}$. This will basically just mean that both the numerator and denominator are differentiable at $x=a$.
2. $\mathbf{g'(x) \neq 0}$ near $\mathbf{x=a}$. Note that it doesn’t matter if $g'(x)=0$ AT $x=a$ as long as you can pick some interval (as small as is necessary) around $x=a$ where $g'(x) \neq 0$ for all x‘s in that interval besides $x=a$. You likely won’t need to worry about running into a function that you can’t pick a small enough interval around $x=a$ to make this work.
3. As x $\rightarrow$ a, f(x) AND g(x) $\mathbf{\rightarrow 0}$ — OR — f(x) AND g(x) $\mathbf{\rightarrow \pm \infty}$

That’s really all there is to it. Let’s jump into some practice problems and I will show you how to apply L’Hospitals Rule.

## Example 1

Evaluate the following limit using L’Hospital’s Rule or explain why L’Hospital’s Rule cannot be used to evaluate this limit.

$$\lim_{x \to \infty} \frac{e^x}{-x^2+1000x}$$

If we tried to use limit properties to evaluate this limit, we would see that both the top and the bottom of this fraction go to either positive or negative infinity as x goes to infinity.

$$\lim_{x \to \infty} \frac{e^x}{-x^2+1000x} \rightarrow \frac{\infty}{- \infty}$$

#### So L’Hospital’s Rule might help…

Now we just need to confirm that the other two conditions are met.

$f(x)=e^x$ is an exponential function and is differentiable everywhere, for any value of x. And $g(x)=-x^2 + 1000x$ is also differentiable everywhere since it’s a polynomial. Since it’s differentiable everywhere, it is also differentiable for any infinitely large x value.

$g'(x) = -2x+1000$ will go to $-\infty$ as x approaches $\infty$. $g'(x) \neq 0$ for any infinitely large x value since it just continues to go to $- \infty$.

So we know that this limit meets all 3 requirements needed to apply L’Hospital’s Rule.

#### Now we know we can apply L’Hospital’s Rule

Taking the derivative of the top and bottom of the fraction individually tells us that:

$$\lim_{x \to \infty} \frac{e^x}{-x^2+1000x} = \lim_{x \to \infty} \frac{e^x}{-2x+1000}$$

Now we can evaluate this new limit instead. But if we do this, we will notice that we will still end up in the same situation that we had before.

$$\lim_{x \to \infty} \frac{e^x}{-2x+1000} \rightarrow \frac{\infty}{- \infty}$$

#### But what if it didn’t really help make the limit easier?

Which puts us in a perfect situation to consider using L’Hospital’s Rule to evaluate this new limit as well. By the same logic as before, we can confirm that the first two conditions are met as well as x gets infinitely large. Since all 3 required conditions are met we can go ahead and apply L’Hospital’s Rule a second time.

$$\lim_{x \to \infty} \frac{e^x}{-2x+1000} = \lim_{x \to \infty} \frac{e^x}{-2}$$

Now we can simply use the basic limit properties to evaluate this last limit.

#### Now we have a much easier limit

$$\lim_{x \to \infty} \frac{e^x}{-2} = \ – \frac{1}{2} \lim_{x \to \infty} e^x = \ – \infty$$

So therefore,

$$\lim_{x \to \infty} \frac{e^x}{-x^2+1000x} = \ – \infty$$

#### A quick note on applying L’Hospital’s Rule twice

This is an interesting problem because it shows that you can apply L’Hospital’s Rule multiple times on the same problem. You just need to make sure that each time you apply it, the resulting limit still meets all 3 required conditions before applying it to the new limit. There is no limit to the number of times you can continue applying L’Hospital’s Rule over and over in the same problem as long as you are making sure that the limit you are applying it to meets all 3 conditions every time you apply it.

## Example 2

Evaluate the following limit using L’Hospital’s Rule or explain why L’Hospital’s Rule cannot be used to evaluate this limit.

$$\lim_{x \to 3} \frac{x-3}{27-x^3}$$

Again, if we think about what value the top and bottom of this fraction will go towards as x approaches 3, we would see that

$$\lim_{x \to 3} \frac{x-3}{27-x^3} \rightarrow \frac{0}{0}$$

Since we get another indeterminate form, which is $\frac{0}{0}$, we should consider using L’Hospital’s Rule to make this limit easier to evaluate.

#### So L’Hospital’s Rule might help…

First, we need to make sure that the other two conditions are met as well.

We can check that $g'(x) = -3x^2$ doesn’t equal zero anywhere near $x=3$. This is because $g'(x) = -3x^2$ is continuous everywhere and the only place where $g'(x)=-3x^2=0$ is when $x=0$. As a result of these two things, we can pick some interval around $x=3$ that doesn’t include $x=0$ to satisfy condition #2.

Also, both f(x) and g(x) are polynomials and are therefore differentiable everywhere. So we know they will both be differentiable on any interval around $x=3$.

#### Now we know we can apply L’Hospital’s Rule

Doing so by taking the derivative of the top and bottom of our fraction separately tells us that

$$\lim_{x \to 3} \frac{x-3}{27-x^3} = \lim_{x \to 3} \frac{1}{-3x^2}$$

And doing this gives us an easier limit to deal with. Now we can simply apply the limit properties to evaluate. Applying the limit properties tells us that:

$$\lim_{x \to 3} \frac{1}{-3x^2} = \frac{1}{-3 \Big( \lim_{x \to 3}x \Big) ^2}= \frac{1}{-3(3)^2} = \ – \frac{1}{27}$$

So therefore we know that:

$$\lim_{x \to 3} \frac{x-3}{27-x^3} = \ – \frac{1}{27}$$

## Example 3

Evaluate the following limit using L’Hospital’s Rule or explain why L’Hospital’s Rule cannot be used to evaluate this limit.

$$\lim_{x \to 0} \frac{|x|}{x^5+2x}$$

If we think about what value the numerator and denominator of this fraction will approach as x approaches 0 from both sides, we would see:

$$\lim_{x \to 0} \frac{|x|}{x^5+2x} \rightarrow \frac{0}{0}$$

Since we get an indeterminate form, which is $\frac{0}{0}$, we should consider using L’Hospital’s Rule to make this limit easier to evaluate.

#### So L’Hospital’s Rule might help…

First, we need to make sure that the other two conditions are met as well.

Upon checking condition #1 however, we run into a problem. Condition #1 requires that f(x) and g(x) are both differentiable on some interval containing $x=0$, including $x=0$.

But $f(x) = |x|$ is not differentiable at $x=0$. Therefore, we actually can’t apply L’Hospital’s Rule to evaluate this limit. I won’t go into the details here since we won’t be using L’Hospital’s Rule. But if you want to try evaluating this limit, I’d recommend considering both one-sided limits on their own and compare them to start. You can see a similar application here.

## Example 4

$\mathbf{\lim\limits_{x \to \infty} \frac{ln(x)}{\sqrt{x}}}$ | Solution

## Optimization Problems Part 2

In my last lesson, I introduced optimization problems and I discussed local extrema. You should check that out if you haven’t already. The next thing that I would like to discuss now is finding global maximums and minimums. The first step in finding a global maximum or minimum of a function is actually very similar to finding the local max and min values.

#### But once you know about the local maximums and minimums, how do you find the global extrema?

Finding the global extrema from the local extrema is really quite simple. And there really is only one way to find the global maximum and minimum values of a function. You just need to find a list of all possible x values where the global max or global min may occur. Then once you have created a list of all possibilities, you just plug them all into the original function.

Not the function’s derivative or the function’s second derivative. But the original function.

You will test for global extrema of f(x) using f(x), not f'(x) or f”(x). This is after you have your list of all possible locations where the global extrema could occur (which will require the use of f'(x)). But my point is that there wouldn’t be a first derivative test or a second derivative test with the global extrema like there was with finding local extrema.

## So what does this look like in practice?

Let’s use an example. For example, let’s say that we are asked to find the global maximum and the global minimum of $f(x)=2x^3-\frac{5}{2}x^2+x-1$ on the domain $-4 \leq x \leq 5$.

Notice we are being asked to find the global extrema on a specific domain. This is important because a lot of functions either go to infinity or to negative infinity as x either gets infinitely large, infinitely small, or approaches some specific value. So if we were asked to find the global maximum of a function that goes to infinity as x goes to infinity, we wouldn’t be able to do this. There would be no maximum since the function only continues to grow.

So we know we will be limited to a specific domain.

As I said before, finding global extrema starts out exactly like finding local extrema. The first thing we need to do is find the critical values of our function. To do this, we just need to find its derivative and set $f'(x)=0$ and solve for x.

$$f(x)=2x^3-\frac{5}{2}x^2+x-1$$ $$f'(x)=6x^2-5x+1$$ Then set $$6x^2-5x+1=0$$ and solve for x to find the critical values. To do this, we can factor the left side of the equation. $$(3x-1)(2x-1)=0$$ To solve this we can set each factor equal to zero individually. $$3x-1=0 \ \ \ \ and \ \ \ \ 2x-1=0$$ $$3x=1 \ \ \ \ and \ \ \ \ 2x=1$$ $$x=\frac{1}{3}, \ \frac{1}{2}$$

So now we know that this function has two critical values, $x= \frac{1}{3}$ and $x=\frac{1}{2}$. Now this is where things get different with a global max/min problem versus finding the local max/min. We also need to consider the endpoints of our given domain as critical values!

This will always be the case when we are looking for a global maximum or minimum. The problem asked us to find the global extrema on the domain $-4 \leq x \leq 5$. Therefore, we will also say that $x=-4$ and $x=5$ will be treated as critical values that we need to test.

### So how to we test our critical values?

The first thing that I would like to do is list out all of the x values we will be testing in one place. Remember, the list of values we need to test came from two places:

1. Setting $f'(x)=0$ and solving for x.
2. Each of the endpoints of the domain on which we need to find the global maximums and minimums.

So in this case we’ll have four total x values that we need to test: $$x=-4, \ \frac{1}{3}, \ \frac{1}{2}, \ and \ 5$$ To test these points, all we need to do is plug each of the four points into f(x). Whichever on outputs the largest number will tell us the global maximum. Whichever outputs the smallest number will tell us the global minimum.

$$f(-4)= \ 2(-4)^3-\frac{5}{2}(-4)^2+(-4)-1 \ = -173$$ $$f \bigg( \frac{1}{3} \bigg) = \ 2 \bigg( \frac{1}{3} \bigg) ^3-\frac{5}{2} \bigg( \frac{1}{3} \bigg) ^2+ \bigg( \frac{1}{3} \bigg) -1 \ = -\frac{47}{54}$$ $$f \bigg( \frac{1}{2} \bigg) = \ 2 \bigg( \frac{1}{2} \bigg) ^3-\frac{5}{2} \bigg( \frac{1}{2} \bigg) ^2+ \bigg( \frac{1}{2} \bigg) -1 \ = -\frac{7}{8}$$ $$f(5)= \ 2(5)^3-\frac{5}{2}(5)^2+(5)-1 \ = \frac{383}{2}$$

So we can see that the smallest of these four numbers is -173 and the largest of them is $\frac{383}{2}$. Therefore, the global maximum of f(x) on $-4 \leq x \leq 5$ is $\frac{383}{2}$ which occurs when $x=5$. And the global minimum of f(x) on $-4 \leq x \leq 5$ is -173 which occurs when $x=-4$.

We can even graph our function using Desmos along with the critical points to make sure our answer makes sense. You can click on the link in the last sentence to see a larger version of the graph.

## Extra practice

If you’d like some extra practice finding global maximums and minimums, here are a few examples you can work through on your own. A couple of these examples will require the use of the product rule and quotient rule.

For each of the following, find the global maximum and minimum of the given function on the given domain or explain why one doesn’t exist.

$$f(x)= 2x^4 + 5x^2 – 12x \ \ \textrm{on the domain} -1 \leq x \leq 2$$ $$g(x)= xe^x +6x^3-12 \ \ \textrm{on the domain} -3 \leq x \leq 0$$ $$h(x)= \frac{x^4-3x^2+1}{x+1} \ \ \textrm{on the domain} -2 \leq x \leq \frac{3}{2}$$ $$j(x)= \frac{x^4-3x^2+1}{x+1} \ \ \textrm{on the domain} -\frac{9}{10} \leq x \leq \frac{3}{2}$$

Hopefully all of this helps with global maximums and minimums, but as always I’d love to hear your questions if you have any. If you find that you get stuck as you’re working through some of these extra practice problems just let me know. Just email me at jakesmathlessons@gmail.com and I’ll see if I can help provide a bit more clarification. You can also use the form below to subscribe to my email list and I will send you my bonus FREE calculus 1 study guide to help you survive calculus! Just put in your name and email address and I’ll be sure to let you know when I post new content! Feel free to go check out my other lessons and solutions about derivatives as well.

* indicates required

## Optimization Problems

Optimization problems are another common application of the derivative. Usually in these problems you are given some function or described some situation and are then asked to find different maximums and minimums. There are a few different things that are commonly asked that you optimize, so I’d like to go over the different categories with you.

## Local maximums and minimums

The most common thing that comes up in optimization problems is finding the local maximums and minimums. The best way to do this is using the derivative of the function you are trying to optimize. Taking the function’s derivative will tell you everything you need to know.

In order to find the list of all x values where the local extrema may occur, you just need to take the function’s derivative, set it equal to zero, and solve for x. In other words, you can find the x values that will give you local max and min values by setting up the equation $$f'(x)=0$$ and solving it for x. Keep in mind, this equation often has multiple solutions, so make sure you include all possible solutions.

Doing this will give you a list of x values where all possible local maximums and minimums occur. These are called critical numbers.

Once you have your list of critical points, you will often need to figure out which ones are maximums and minimums. There are two tests you can conduct to figure which one they are.

### First derivative test

This is usually the method I like to use. As you might guess, the first derivative test only requires the use of the first derivative. I usually use this test because we already had to find the first derivative to get our list of critical values.

The first thing I would suggest doing before beginning your test is drawing out a number line and putting your critical values on it. Let’s just say for example that we had some function f(x), took its derivative, and found that the critical values are $x=-1, \ 2, \ 6$. Our number line might look something like this.

That’s all you need on your number line at this point. Don’t label any extra x values besides your critical values. It will only make things more confusing later.

Now all we need to do is plug x values into f’ that are around these critical values to figure out where f is increasing and decreasing. So we will need to plug in some number that is in each of the following 4 intervals. $$x<-1,$$ $$-1 < x < 2,$$ $$2 < x < 6,$$ $$x>6.$$ So all we need to do is just plug in some number in each segment of our labeled number line.

It doesn’t matter which number you plug in from each of those intervals, so you can pick whichever numbers seem easiest to plug into f’. Let’s say we will plug $x=-2, \ 0, \ 4, \ 7$ into f’. We want to plug them into f’ because we are trying to figure out information about the slope of f. This will tell us where it’s increasing and decreasing. Let’s imagine we plug these four x values into f’ and find that $$f'(-2)=-4, \ \ \ f'(0)=6, \ \ \ f'(4)=2, \ \ \ f'(7)=-7.$$

We only really care if these values are positive or negative. If f’ is positive at a certain x value, we know f must have a positive slope. And if f’ is negative at a certain x value, we know f must have a negative slope.

Since f'(-2) is negative, f must have a negative slope at $x=-2$. And f must also have a negative slope for all $x<-1$ since that is the interval from our number line that $x=-2$ falls within. So we should label this interval with a negative slope, like this:

Then we want to do the same thing for the interval of $-1 \leq x \leq 2$. We found out that $f'(0)=6$, which is a positive number. Therefore, f must have a positive slope for all $-1 \leq x \leq 2$. So we can label our number line accordingly.

Then we want to do the same thing with the other two intervals. This would give us something like this for our number line:

Now we just need to use this number line to determine which critical values are maximums and which are minimums. There are really only 3 main cases you need to think about for each critical value.

1. If f is increasing to the left and decreasing to the right, that critical point will be a local maximum. This will cause this little section of the graph to look like a frowny face. Therefore, the critical point will higher than the graph right around it.
2. If f is decreasing to the left and increasing to the right, that critical point will be a local minimum. This will cause this little section of the graph to look like a smiley face. Therefore, the critical point will lower than the graph right around it.
3. If f is decreasing to the left and the right or if it’s increasing to the left and the right, that critical point will NOT be a local maximum or a local minimum.

So let’s look at each of our three critical values on the number line above and see which category they all fall into.

• For $x=-1$, you can see that f is decreasing on the left side and increasing on the right side. Therefore, the section of the f(x) right around $x=-1$ looks like a smiley face and would be a local minimum.
• For $x=2$, you can see that f is increasing on the left side and increasing on the right side. Therefore, the critical value $x=2$ would not be a local maximum or a local minimum. We would need f(x) to change direction at $x=2$ for it to be a maximum or minimum, but that doesn’t happen here.
• For $x=6$, you can see that f is increasing on the left side and decreasing on the right side. Therefore, the section of the f(x) right around $x=6$ looks like a frowny face and would be a local maximum.

### Second derivative test

The other way you can test to see if each critical value is a local maximum or a local minimum is with the second derivative test. You do not need to use both methods if you are only trying to find local extrema because they will give you the same conclusions. Just pick which test you like more. This method will require us to find the second derivative of our function, or f”(x). We can find this simply by finding the derivative of f'(x), which we already found.

Just like with the first derivative test, it helps to draw everything out on a number line. Start with just drawing a number line that only contains the critical values which we found a while ago.

Now we need to plug each of our critical values into our second derivative, or f”(x). One important difference is that we had to plug numbers around our critical values with the first derivative test. But with the second derivative test, we will actually plug in the critical values instead of numbers around them.

Since we need to plug each critical value into our second derivative, this means we will plug $x=-1, \ \ 2, \ \ 6$ into f”(x). When we do that, let’s imagine we find that $$f”(-1) = 2, \ \ f”(2) = 0, \ \ f”(6) = -9.$$

Just like before, it doesn’t really matter what the exact values are that we just found. All that matters is whether they are positive, negative, or zero. If f” is positive at a certain point, then f would be concave up at that point. And if f” is negative at a point, then f is concave down at that point. If f” is zero, then f isn’t concave up or concave down at that point.

Since f”(-1) is positive (we just found that it’s 2), we know that f is concave up when $x=-1$. That just means that it’s curved upward, like a smiley face. So we can indicate this on our number line to keep track of what we have so far.

Since f”(2) is zero, we know that f is not concave up or down when $x=2$. This tells us that $x=2$ is the point where f switches from being concave up to concave down, or vise versa. Since f doesn’t have concavity (curvature) here, we will show this as a flat line on our number line.

And lastly, since f”(6) is negative (we just found that it’s -9), we know that f is concave down when $x=6$. That just means that it’s curved downward, like a frowny face. Therefore, we might get something like this.

So now we just need to figure out what all this means when it comes to the second derivative test. Again, there are three cases we want to look for.

1. If f(x) is concave up, or f”(x) is positive, for some critical value x, then this critical value represents a local minimum.
2. If f(x) is concave down, or f”(x) is negative, for some critical value x, then this critical value represents a local maximum.
3. If f(x) isn’t concave up or down, or f”(x) is zero, for some critical value x, then this critical value could be a local minimum or local maximum or neither.

So let’s compare these to our critical values to see if they are each local maximums or minimums.

• For $x=-1$, you can see that f is concave up. Therefore, the section of the f(x) right around $x=-1$ looks like a smiley face and would be a local minimum.
• For $x=2$, you can see that f is not concave up or concave down. In this case we don’t know from the second derivative test if this critical value would be a local maximum or a local minimum.
• For $x=6$, you can see that f is concave down. Therefore, the section of the f(x) right around $x=6$ looks like a frowny face and would be a local maximum.

Notice that these are the exact same results we found from the first derivative test, aside from the undetermined critical value. I know we didn’t actually have a function for f(x) to work through, but you would find the same thing if you did actually go through these processes with some function. To find which critical values are local maximums, local minimums, or neither, you only need to do one of these two tests.

### Extra practice

Find the critical values for the following functions and determine whether each one is a local minimum, local maximum, or neither. A couple of these examples will require the use of the product rule and the quotient rule, so check those out if you need a refresher.

$$f(x)= 2x^4 + 5x^2 – 12x$$ $$g(x)= xe^x +6x^3-12$$ $$h(x)= \frac{x^4-3x^2+1}{x+1}$$

Hopefully all of this helps you gain a bit of a better understanding of local extrema, but as always I’d love to hear your questions if you have any. Go check out part 2 of my coverage on optimization problems where I go over global maximums and minimums.

## Examples of product, quotient, and chain rules

I have already discuss the product rule, quotient rule, and chain rule in previous lessons. But I wanted to show you some more complex examples that involve these rules. The reason for this is that there are times when you’ll need to use more than one of these rules in one problem. So let’s dive right into it!

## Example 1

Find the derivative of $y \ = \ sin(x^2 \cdot ln \ x)$.

At first glance of this problem, the first thing we should notice is that we can think of this function as one function plugged into another. There is a clear inner function and a clear outer function.

It can be broken down as $x^2 \cdot ln \ x$ being plugged into sin(x) for x. Since our function can be thought of as one function plugged into another, we will want to start out with the chain rule.

### Chain rule

The first thing we need to do to apply the chain rule is to figure out our inside function and outside function. It’s usually easier to think about the insider function first.

#### Finding f and g

To find the inside function we just need to answer the question: what function is being plugged into another?

Looking at our function you can see that we are taking $x^2 \cdot ln \ x$ and plugging that into another function. So we will say $$g_1(x) = x^2 \cdot ln \ x$$

Now that we have decided on the inside function, we need to find the outside function. All we need to do here is look at the original function, and replace our inside function with a single x. So we will replace $x^2 \cdot ln \ x$ with just x. This gives us $$f_1(x) = sin(x).$$

#### Finding f’ and g’

Now that we have found f and g, we just need to take each of their derivatives to find f’ and g’.

Finding f’ should be simple here. $$f’_1(x) = cos(x)$$

Finding g’ will be a little more tricky.

Looking at our function $g_1(x)$ you can see that it is actually the product of two simpler functions, $x^2$ and $ln \ x$. Therefore, we are going to have to use the product rule to find this derivative. You can kind of think of this as a smaller sub-problem within our problem, so we will come back to the chain rule after applying the product rule.

### Product rule

We need to use the product rule to find the derivative of $$g_1(x) = x^2 \cdot ln \ x.$$ The product rule starts out similarly to the chain rule, finding f and g. However, this time I will use $f_2(x)$ and $g_2(x)$.

#### Finding f and g

With the product rule it doesn’t really matter which function is f and which is g. As long as we correctly identify that our function is a product of two simpler functions, it’ll work out correctly. So we will say $$f_2(x) = x^2$$ $$g_2(x) = ln \ x.$$

#### Finding f’ and g’

Now we just need to find the derivatives of f and g. Since they are fairly simple functions, this shouldn’t be too difficult.

To find the derivative of f we just need to use the power rule. $$f’_2(x) = 2x.$$

And finding the derivative of g should be a derivative that you have memorized. Using Wolfram Alpha we can see that $$g’_2(x) = \frac{1}{x}.$$

#### Plugging into the formula

Now that we have found all the pieces we need, we can simply plug them all into the product rule formula. $$g’_1(x) = f_2(x) \cdot g’_2(x) \ + \ f’_2(x) \cdot g_2(x)$$ $$\frac{d}{dx} \Big[ x^2 \cdot ln \ x \Big] \ = \ x^2 \cdot \frac{1}{x} \ + \ 2x \cdot ln \ x$$ $$\frac{d}{dx} \Big[ x^2 \cdot ln \ x \Big] \ = \ x \ + \ 2x \cdot ln \ x$$

### Back to chain rule

Now that we know the derivative of $x^2 \cdot ln \ x$ we can go back up to the chain rule. We knew that $$g_1(x) = \ x^2 \cdot ln \ x$$ and by using the product we just found that $$g’_1(x) = \ x \ + \ 2x \cdot ln \ x.$$ Just as a quick reminder, we already found that $$f_1(x) = sin(x)$$ $$f’_1(x) = cos(x).$$ Now we just need to plug these four pieces into the formula for chain rule. $$h’_1(x) = \ f’_1 \big( g_1(x) \big) \cdot g’_1(x)$$ $$\frac{d}{dx} \Big[ sin \big(x^2 \cdot ln \ x \big) \Big] \ = \ cos \big( x^2 \cdot ln \ x \big) \cdot \big( x \ + \ 2x \cdot ln \ x \big)$$

And that’s it! We could factor out a like term out of one of these factors, but it wouldn’t really make the function any simpler so I won’t do that. We can also use Wolfram Alpha to check our answer. A quick note on that, Wolfram Alpha uses “log” instead of “ln” to describe a natural log.

## Example 2

Find the derivative of $y = \frac{x \ sin(x)}{ln \ x}$.

Looking at this function we can clearly see that we have a fraction. Therefore, we can break this function down into two simpler functions that are part of a quotient. So we can see that we will need to use quotient rule to find this derivative.

### Quotient rule

As discussed in my quotient rule lesson, when we apply the quotient rule to find a function’s derivative we need to first determine which parts of our function will be called f and g.

#### Finding f and g

With the quotient rule, it’s fairly straight forward to determine which part of our function will be f and which part will be g. We will always say f is the numerator (top of our fraction) and g is the denominator (bottom of our fraction). So we can say $$f_1(x) \ = \ x \ sin(x)$$ $$g_1(x) \ = ln \ x.$$

#### Finding f’ and g’

Once we have determined which part of our function we are going to call f and which part will be g, we need to take each of their derivatives so we can use the quotient rule formula.

First we’ll start with finding f’. To find this we need to find the derivative of $f_1(x)= x \ sin(x)$. Notice this function is actually a product of two simpler functions. So in order to find $\mathbf{f'_1(x)}$ we will actually need to use the product rule. This will create a smaller sub-problem for us so we will need to come back to the quotient rule in a moment.

### Product rule

As we did in the previous example, or in my product rule lesson, we need to start by determining which piece of the function $f_1(x) = x \ sin(x)$ will be $f_2$ and which will be $g_2$.

#### Finding f and g

When using the product rule it doesn’t really matter which piece of the product is called f and g. So we will say $$f_2(x) = x$$ $$g_2(x) = sin(x).$$

#### Finding f’ and g’

In order to use the product rule formula, we need to find the derivative of each of these pieces now. Fortunately, both of these pieces are simple functions to differentiate. $$f’_2(x) = 1$$ $$g’_2(x) = cos(x)$$

#### Plugging into the formula

Now we just need to plug the four pieces we’ve found into the product rule formula. $$f’_1(x) = \ f_2(x) \cdot g’_2(x) \ + \ f’_2(x) \cdot g_2(x)$$ $$\frac{d}{dx} \Big[ x \ sin(x) \Big] \ = \ x \cdot cos(x) \ + \ 1 \cdot sin(x)$$ $$\frac{d}{dx} \Big[ x \ sin(x) \Big] \ = \ x \ cos(x) \ + \ sin(x)$$

### Back to the quotient rule

Now that we have used the product rule to find $$f’_1(x) = \ x \ cos(x) \ + \ sin(x)$$ we need to find $g'_1(x)$ so we can use the quotient rule formula. Remember $g_1(x) = ln \ x$, which is a function whose derivative you should memorize. $$g’_1(x) = \frac{1}{x}.$$ So now we know all of the pieces we need to apply the quotient rule formula.

$$h'(x) \ = \ \frac{f’_1(x) \cdot g_1(x) \ – \ f_1(x) \cdot g’_1(x)}{g^2_1(x)}$$ $$\frac{d}{dx} \Bigg[ \frac{x \ sin(x)}{ln \ x} \Bigg] \ = \ \frac{ \Big[ \big( x \ cos(x) + sin(x) \big) \cdot ln \ x \Big] \ – \ \Big[ x \ sin(x) \cdot \frac{1}{x} \Big]}{\big( ln \ x \big)^2}$$

And now we can just simplify by distributing through all of our parenthesis.

$$\frac{d}{dx} \Bigg[ \frac{x \ sin(x)}{ln \ x} \Bigg] \ = \ \frac{ x \ ln(x) \ cos(x) \ + \ ln(x) \ sin(x) \ – \ sin(x)}{ln^2(x)}$$

And that’s the answer! Again, we can check this using Wolfram Alpha.

If you have any questions on any of this just let me know! You can email me at jakesmathlessons@gmail.com. You can also use the contact form below and I’ll add you to my email list and send you my calculus 1 study guide to help you boost your calculus scores! I’d also love to hear any suggestions for future posts so please don’t hesitate to reach out to me. If you want some more practice with derivatives go check out my other lessons and problems related to derivatives.

* indicates required

## RELATED RATES – Cone Problem (Water Filling and Leaking)

Water is leaking out of an inverted conical tank at a rate of 10,000 $\frac{cm^3}{min}$ at the same time water is being pumped into the tank at a constant rate. The tank has a height 6 m and the diameter at the top is 4 m. If the water level is rising at a rate of 20 $\frac{cm}{min}$ when the height of the water is 2 m, find the rate at which water is being pumped into the tank.

Here we have another related rates problem. This is a pretty typical problem you would see in a calculus class. There is a lot going on in this one since we have a related rates with a cone filling and leaking water. Just like I said when I discussed related rates, these problems tend to follow a specific pattern. If you need a refresher on what the four steps are just click that link to my related rates lesson. Otherwise, we’ll jump right into it.

## 1. Draw a sketch

You should always start a related rates problem with a drawing of the real world situation that’s being described in the problem. The problem describes an “inverted conical tank.” This just means that the tank is in the shape of an up-side-down cone. Other than that, the other facts are quite simple.

• Water is leaking out at a rate of 10,000 $\frac{cm^3}{min}$.
• Liquid is being pumped into the tank at an unknown constant rate.
• Tank’s height is 6 m.
• Diameter of the circular opening is 4 m.
• Water level is rising at a rate of 20 $\frac{cm}{min}$ when the height of the water is 2 m.

So we need to put all of these facts into a drawing, which might look something like this.

The important thing to point out about our sketch is that we have two cones here.

One cone is the tank, which is the larger cone. This one will always stay the same size and is not changing. This means that its height, diameter of the base, and its volume are all constants.

The second cone is the water sitting in the bottom of the tank, which is the smaller cone. This one is changing as our liquid flows into and out of the tank. As time passes its dimensions change. Therefore, its height, diameter of the base, and volume are all functions of time.

## 2. Come up with your equation

Now that we have made our sketch, we need to come up with an equation that relates all of the different quantities we’re dealing with. All of the information we know about and the information we are looking for relates to a volume or measurements of some cone. The measurements are either of our water in the tank or the tank itself, but in both cases the measurements describe a cone.

#### What are we looking for?

The question asks us to find the rate at which water is being pumped into the tank. As it is pumped into the tank, this will impact the volume of the smaller cone which is the water sitting in the tank. Therefore, the information we are looking for will somehow relate to how quickly the volume of the liquid in the tank is changing. Or the rate of change of the volume of the small cone.

#### What do we know about?

We were given quite a bit of information so let’s break it into a few different pieces.

• We know the height and base diameter of the tank. Using these, we can find its base radius and volume. Since the tank isn’t changing we know, or can easily find, any important measurement of the large cone.
• We know how fast water is flowing out of the tank. This tells us a piece of information relating to the rate of change of the small cone. We will need to use this once we know how fast water is flowing into the tank.
• The last information we already know is the height and the rate of change of the height of the small cone at a particular moment.

#### Putting it into an equation

As I mentioned above, we need to find the rate of change of the volume of the liquid in the tank. Since we know we will need to use implicit differentiation to get the rate of change, our equation needs to involve the volume of the small cone. Remember, the equation we come up with should include quantities and measurements, not rates of change yet.

So we are dealing with the volume of something that’s in the shape of a cone. Because of this we can start by looking at the formula for a volume of a cone then we’ll see if we can use this directly or if we will need to make some adjustments. The volume of a cone can be described by

$$V=\pi r^2 \frac{h}{3}$$

where r is the radius of the cone’s base and h is its height.

Clearly we would be able to use this to get the rate of change of the volume since the equation already includes the volume. But this means we need to know everything else in the equation.

Other than the volume, the equation requires that we know the radius and height of the cone. We also need to know the rate of change of these other parts.

By referring back to our original drawing, you can see that we clearly already know the height and the rate of change of the height of the liquid in the tank at this specific moment. Remember, these two values are changing as liquid goes into the tank, but we know their values at this specific instant.

We don’t know the radius yet, but we can find it by comparing the small and large cones and using similar triangles. However, the problem is that we don’t know the rate of change of the radius. We could figure it out, but it would be quite complicated and there is actually something else we can do instead.

So we want to avoid using the radius, or diameter, because we don’t want to have to find its rate of change. So what else can we do?

In order to get around this, we will need to write an equation that doesn’t include the radius. But remember, it’s fine if we use the height because we know its rate of change. The important fact we need to use here is that the two cones will always form similar triangles. This will be true no matter where the water level is, as it fills up.

Consider the following drawing which represents the conical tank shown from the side.

As shown in the sketch above, the top sides of these triangles are parallel. This means that each angle in the small triangle is the same as the corresponding angle in the large triangle. Therefore, these are similar triangles. Since they are similar triangles, we know one important fact:

$$\frac{x}{2}=\frac{4}{6}$$

So we can use this to solve for x.

$${x}=\frac{4}{6} \cdot 2$$

$$x=\frac{4}{3}$$

So we can see that in both of these triangles, the top side is two-thirds as long as the height of the triangle. In other words, if we multiply the height of the triangle by $\frac{2}{3}$, this would give us the length of the top side of the triangle. Remember the top of the triangle is the diameter of the corresponding cone from our first drawing. This tells us the following relationship between the height and diameter of the cones:

$$\frac{2}{3}h=d$$

Since our goal here is to find out the relationship between the radius and the height, not the diameter and the height, we need to do one more thing. The diameter of a circle is always twice as much as the radius, so we know $d=2r$. We can substitute this in for d and solve for r.

$$\frac{2}{3}h=2r$$

$$\frac{1}{3}h=r$$

#### Going back to our equation

Now we need to go all the way back to our volume equation that involved h and r.

$$V=\pi r^2 \frac{h}{3}$$

Since we now have this new way to write r in terms of h, we can substitute this into the volume equation and simplify from there.

$$V=\pi \bigg( \frac{1}{3}h\bigg)^2 \frac{h}{3}$$

$$V=\pi \cdot \frac{1}{9}h^2 \frac{h}{3}$$

$$V= \frac{1}{27} \pi h^3$$

Now we have an equation involving V and h. Since we are looking for the rate of change of V, and we already know about V, h, and the rate of change of h, this equation will work perfectly.

## 3. Implicit differentiation

We created our equation containing all of the necessary pieces. Remember earlier I said that we are going to need to find the value of $\frac{dV}{dt}$ in order to find how quickly liquid is going into the tank? Now is the time to do this.

As with any related rates problem, we need to take the derivative of our equation. Since we already have an equation for V, all we need to do to find $\frac{dV}{dt}$ is take the derivative of V with respect to time. Let’s do that now.

$$\frac{d}{dt} \big[ V \big] = \frac{d}{dt} \bigg[ \frac{1}{27} \pi h^3 \bigg]$$

The left side of this equation will be quite simple, but to find the right side we need to keep a couple things in mind. We are going to take the derivative with respect to time. Therefore, we need to treat h as a function of time rather than a variable. This means that we will need to use the chain rule to take this derivative. You can see a more detailed explanation of how to do this and why we are doing it in my implicit differentiation lesson.

Also remember that $\frac{1}{27} \pi$ is just a constant coefficient in front of our $h^3$ term.

$$\frac{dV}{dt}= \frac{3}{27} \pi h^2 \cdot \frac{dh}{dt}$$

$$\frac{dV}{dt}= \frac{1}{9} \pi h^2 \cdot \frac{dh}{dt}$$

## 4. Solve for desired rate of change

The final step of a related rates problem is to solve of the rate of change the question asked for. Since $\frac{dV}{dt}$ is already isolated we don’t need to worry about solving for the variable we are looking for.

$$\frac{dV}{dt}= \frac{1}{9} \pi h^2 \cdot \frac{dh}{dt}$$

All we need to do now is plug in the other information missing from the equation to tell us all we need to know about $\frac{dV}{dt}$. As you can see, this mean we need to figure out the values for h and $\frac{dh}{dt}$. Luckily, both the height and the rate the height is increasing of the small cone were both given to us.

Looking back at our drawing, which I have put below, we can see that both of these values we need are already labeled.

Looking at our sketch we can see that h, which is shown as the height of our small cone, is 2 m. We can also see that $\frac{dh}{dt}$, which is shown as the speed at which the water level is rising, is 20 $\frac{cm}{min}$. But there is one problem here. We need to be careful of our units!

Notice that the height is measured in meters and its rate of change is measured in centimeters.

We need to convert one of these two measurements so that we are either using meters or centimeters throughout the whole problem. It doesn’t matter which one we choose as long as there are the same. I will go ahead and use meters. Don’t worry, if you need the answer in centimeters I’ll discuss how to convert to that in a minute. Since $100 \ cm = 1 \ m$ we know that

$$h=2m$$

$$\frac{dh}{dt} = 0.2 \ \frac{m}{min}$$

#### Putting it all together

So now we can plug these values back into our equation for $\frac{dV}{dt}$.

$$\frac{dV}{dt}= \frac{1}{9} \pi h^2 \cdot \frac{dh}{dt}$$

$$\frac{dV}{dt}= \frac{1}{9} \pi (2)^2 \cdot 0.2$$

$$\frac{dV}{dt}= \frac{4}{9} \pi \cdot \frac{1}{5}$$

$$\frac{dV}{dt}= \frac{4 \pi}{45}$$

$$\frac{dV}{dt} \approx 0.279 \ \frac{m^3}{min}$$

But remember this isn’t quite our answer. We still have one more step. The question asked us to find the rate at which water is being pumped into the tank. We just found the rate at which the volume of water in the tank is changing.

There are three important values to think about here.

• The rate water is being pumped into the tank.
• Rate of change of the water actually in the tank.
• The rate liquid is flowing out of the tank.

We are trying to find the rate water is being pumped into the tank and we already know the other two rates. It was given that water is flowing out of the tank at a rate of 10,000 $\frac{cm^3}{min}$.

#### Be careful of the units

We know the rate at which the liquid is flowing out of the tank, but it uses centimeters. Since we decided earlier that we want to use meters instead, we need to convert this as well. This will be a little different though.

Think about a cube with each side length being 1 m. This cube would be 1m x 1m x 1m and would have a volume of 1 $m^3$. Since we know that $1 \ m = 100 \ cm$, we can also say that this same cube is 100cm x 100cm x 100cm and would actually have a volume of 1,000,000 $cm^3$. Therefore, we can say

$$1m^3 = 1,000,000cm^3.$$

If we divide both sides of this equation by 100, we can see that

$$\frac{1}{100}m^3 = 10,000cm^3.$$

So we then can say that water is flowing out of the tank at a rate of 0.01 $\frac{m^3}{min}$.

#### How it fits together

We know that $\frac{dV}{dt} \approx 0.279 \ \frac{m^3}{min}$ is a positive number. This means that the amount of water in the tank is increasing at this instant. Since some water is flowing out of the tank at a rate of 0.01 $\frac{m^3}{min}$, it must be flowing into the tank faster than this. If it were not, the volume in the tank would be decreasing.

In fact, you can think of the rate of change of the volume of water in the tank as the rate of water flowing in minus the rate of water flowing out.  Let’s say X represents the rate at which liquid is flowing into the tank and we can use this equation to represent the previous sentence.

$$X-0.01=0.279.$$

Solving for X tells us

$$X=0.289.$$

So water must be flowing into the tank at a rate of 0.289 $\frac{m^3}{min}$. And this is the value the question was asking us to find!

#### We can also give our answer in other units

If we go back to our equation before we started plugging in anything, we can instead plug everything in terms of centimeters instead of meters. In this case we will have $h=200cm$ and $\frac{dh}{dt}=20 \frac{cm}{min}$.

$$\frac{dV}{dt}= \frac{1}{9} \pi h^2 \cdot \frac{dh}{dt}$$

$$\frac{dV}{dt}= \frac{1}{9} \pi (200)^2 (20)$$

$$\frac{dV}{dt} \approx 279,252.68$$

Now just like above, we need to also consider how fast the water is flowing out of the tank. This time we don’t need to convert the units though since we are using centimeters.

$$Y-10,000= 279,252.68$$

$$Y= 289,252.68$$

So we can also say that water is flowing into the tank at a rate of 289,252.68 $\frac{cm^3}{min}$. This is more likely going to be a better answer simply because it is more precise that the previous answer we found!

Enter your name and email below and I’ll send you my bonus calculus 1 study guide for FREE!

* indicates required

This was a good cone related rates example, but if you want some more practice you should check out my related rates lesson. At the bottom of this lesson there is a list of related rates problems and solutions. I also have several other lessons and problems on the derivatives page you can check out. If you can’t find the topic or question you’re looking for just let me know by emailing me at jakesmathlessons@gmail.com!

## Solution – A kite 100 ft above the ground moves horizontally at a speed of 8 ft/s. At what rate is the angle between the string and the horizontal decreasing when 200 ft of string has been let out?

A kite 100 ft above the ground moves horizontally at a speed of 8 ft/s. At what rate is the angle between the string and the horizontal decreasing when 200 ft of string has been let out?

### 1. Draw a sketch

Here we have a related rates problem.  As I said when I discussed related rates problems initially, the first thing I like to do with these problems is draw a sketch of the scene that is being described.  If you want to refer back to that, you can click here.  Otherwise, let’s sketch the problem described here.

### 2. Come up with your equation

The next thing we need to do is set up our equation which will relate our different quantities.  To do this, we will want to consider what value the question is asking us to find.

What are we looking for?

It asks “at what rate is the angle between the string and the horizontal decreasing when 200 ft of string has been let out?”  Therefore, the value we are looking for is the “rate of change of the angle between the string and the horizontal.”  This just means we will need to consider the angle between the string and the ground (the ground is the horizontal in this case).  If you look back at our drawing, you will see that this angle is represented by $\theta$.  Since our goal is to find how fast $\theta$ is changing, we need $\theta$ to be in our original equation.

What do we know about?

Now we need to consider what other quantities or variables we know something about.  Clearly we know something about the two sides of the triangle that are labeled as being 100 ft and 200 ft.  And we can use these two sides to figure out the length of the third side, which is not labeled in our drawing.

Although we could simply call one of those sides $a$ and the other one $b$ and proceed from there, there is another option that may simplify our problem.

Consider the fact that the kite is moving horizontally.  This means that the kite is not getting any further from or closer to the ground as it moves.  Therefore, the side that is labeled 100 ft will actually be 100 ft at any point in this kite’s flight.  Because of this we actually don’t need to designate a variable to this side of the triangle.  Instead this side is simply a constant 100 ft.

Now we just need to use one of the other two sides of the triangle.  We could technically use either one, but one will be a lot easier than the other.  It looks like the hypotenuse would be the easier of the two, because we know it’s 200 ft at this moment.  However, we don’t know exactly how fast it’s changing.  We can figure that out but it wouldn’t be easy.

We do know exactly how fast the unlabeled side is changing.  The question states that the kite is moving horizontally at a speed of 8 $\frac{ft}{s}$.  Since this unlabeled side is exactly horizontal, we know its rate of change is also 8 $\frac{ft}{s}$.  We can figure out its length using Pythagorean Theorem later, but this would certainly be easier than finding the rate of change of the hypotenuse.  Therefore, I will go ahead and use the unlabeled side.

Since this unlabeled side is going to be changing we will need to designate a variable to this side of the triangle.  As the kite moves away from the person flying it, the person holding the string has to let more string out and allow it to become longer.  This means that this unlabeled side in our drawing will need to be described with a variable.  We will call it side $a$.

Putting it into an equation.

Now we have three different quantities we need to relate somehow:

1. Angle $\theta$ (this will be changing as the kite moves).
2. Side $a$ (this will be changing as the kite moves and the string is let out).
3. Side labeled 100 ft (this will not change and can be treated as a constant).

So we have two sides and an angle that we need to make an equation with.  To do this, think about where these sides are in relation to the angle $\theta$.  The side labeled 100 ft is the side opposite to the angle $\theta$ and the side we’re calling $a$ is adjacent to the angel $\theta$.

Usually when dealing with two sides and one angle of a triangle, you will want to use either sine, cosine, or tangent to relate the three.  So which one should be used when we know the opposite side and the adjacent side to the angle in question?

Remember soh, cah, toa?

• Sine Opposite Hypotenuse
• Cosine Adjacent Hypotenuse
• Tangent Opposite Adjacent

Since we have the opposite side and the adjacent side, we want to use tangent.  Therefore we can say:

$$tan(\theta) = \frac{100}{a}$$

Since it will make finding the derivative easier, I am going to rewrite this as

$$tan(\theta) =100a^{-1}$$

### 3. Implicit differentiation

As with any related rates problem, we now need to take the derivative of both sides of the equation with respect to time.  Since $\theta$ and $a$ are both functions of time, we will need to use chain rule for both sides of this equation.  We know they are functions of time because they are both going to be dependent on the position of the kite as time progresses.  We don’t have an explicit formula for either of these functions, but we know their values are dependent on time.

$$\frac{d}{dt}tan(\theta) =\frac{d}{dt}100a^{-1}$$

$$\frac{d}{dt}\frac{sin(\theta)}{cos(\theta)} =\frac{d}{dt}100a^{-1}$$

To find the derivative of the left side of this equation you will need to use the quotient rule and the chain rule.  I’m not going to show all the steps of how to do this but if you want a refresher, you can read about the quotient rule here and the chain rule here.  Using Wolfram Alpha, you can see that

$$\frac{d}{dx}tan(x)=\frac{1}{cos^2x}$$

Therefore, we can say that

$$\frac{d}{dt}tan(\theta)=\frac{1}{cos^2 \theta} \cdot \frac{d\theta}{dt}$$

Plugging this back into the left side of our equation, we get

$$\frac{1}{cos^2 \theta} \cdot \frac{d\theta}{dt} =\frac{d}{dt}100a^{-1}$$

$$\frac{1}{cos^2 \theta} \cdot \frac{d\theta}{dt} =-100a^{-2} \cdot \frac{da}{dt}$$

### 4. Solve for desired rate of change

The last step of any related rates problem is to solve for the desired rate of change.  Now remember the thing we need to find is the rate of change of our angle $\theta$.  This is exactly what $\frac{d\theta}{dt}$ represents.  So now we just need to solve for $\frac{d\theta}{dt}$.

$$\frac{1}{cos^2 \theta} \cdot \frac{d\theta}{dt} =-100a^{-2} \cdot \frac{da}{dt}$$

$$\frac{d\theta}{dt} =-100a^{-2} \cdot \frac{da}{dt} \cdot cos^2 \theta$$

Now we just need to plug in the values for $a$, $\frac{da}{dt}$, and $\theta$ and we will have our answer.  We don’t know all of these values but we can find them.

Finding a

As I mentioned before, we can find $a$ by using Pythagorean Theorem.  Looking back at our drawing, we have a right triangle with side lengths of 100 ft, 200 ft, and $a$.  We know that

$$100^2 + a^2 = 200^2$$

$$10,000 + a^2 = 40,000$$

$$a^2 = 30,000$$

$$a = \sqrt{30,000}$$

$$a = 100\sqrt{3}$$

Finding  $\mathbf{\frac{da}{dt}}$

This was actually given.  We know that $a$ is the horizontal distance the kite is away from the person flying the kite.  We know that the kite is moving horizontally at a speed of 8 $\frac{ft}{s}$.  Because of this we know that this is also the rate at which $a$ is changing.  Since $\frac{da}{dt}$ is the rate of change of $a$, we know

$$\frac{da}{dt} = 8$$

Finding $\mathbf{\theta}$

To find $\theta$ we will need to go back to the original equation we came up with before the implicit differentiation step:

$$tan(\theta) = \frac{100}{a}$$

Since we know $a$, we can plug it in here and solve for $\theta$.

$$tan(\theta) = \frac{100}{100\sqrt{3}}$$

$$tan(\theta) = \frac{1}{\sqrt{3}}$$

This angle is actually on the unit circle and by using this we know:

$$\theta = \frac{\pi}{6}$$

Note that $\theta$ will be in radians.

Now we can plug all of these into our equation for $\frac{d\theta}{dt}$.

$$\frac{d\theta}{dt} =-100a^{-2} \cdot \frac{da}{dt} \cdot cos^2 \theta$$

$$\frac{d\theta}{dt} =-100 \big(100\sqrt{3} \big)^{-2} \cdot 8 \cdot cos^2 \Bigg( \frac{\pi}{6} \Bigg)$$

$$\frac{d\theta}{dt} =-\frac{1}{300} \cdot 8 \cdot \Bigg( \frac{\sqrt{3}}{2} \Bigg)^2$$

$$\frac{d\theta}{dt} =-\frac{1}{300} \cdot 8 \cdot \frac{3}{4}$$

$$\frac{d\theta}{dt} =-\frac{1}{50}$$

So we can say that the angle between the string and the horizontal is decreasing at a rate of $\frac{1}{50} \ \frac{radians}{s}$ when 200 ft of string has been let out.

And that’s the answer to the question!  Hopefully that wasn’t too bad, but if you have any questions I’d love to hear them.  I know related rates problems can be challenging so you can email me any questions or suggestions at jakesmathlessons@gmail.com.  If you have any other problems you’d like to see worked out go ahead and send me an email.

Enter your name and email below to get your FREE copy of my calculus 1 study guide to help you boost your test scores!

* indicates required

If you feel you need some more practice with related rates, you can check out the lesson where I discussed related rates for more examples.

Also, if you want to check out some other problems and get some practice with derivatives, go check out my derivatives page.  You can see what other topics I’ve already covered and problems I’ve worked through.  If you can’t find your problem there just let me know and I may post the solution to your problem.

## Solution – Find the values of a and b that make the function differentiable everywhere.

Find all values of $a$ and $b$ that make the following function differentiable for all values of $x$.

$$f(x) = \begin{cases} bx^2-3 & \mbox{if } x\leq -1 \\ ax+b & \mbox{if } x>-1 \end{cases}$$

When trying to solve a problem like this, there are actually two things you will need to consider for our function $f(x)$.  Obviously, we need to make sure that it’s differentiable everywhere, but this actually implies something else that we will want to consider as well.

Since a function being differentiable implies that it is also continuous, we also want to show that it is continuous.  The reason for this is that any function that is not continuous everywhere cannot be differentiable everywhere.  Once we make sure it’s continuous, then we can worry about whether it’s also differentiable.

## Making sure f(x) is continuous everywhere

I’m not going to go into quite as much detail to show the part about making sure the function is continuous because I have already done this, which you can see by clicking here.

To make sure $f(x)$ is continuous at $x=-1$ we need to make sure that $$\lim_{x \to -1} f(x) = f(-1).$$  Since we have a piecewise function, we will need to consider each one-sided limit, but in this case only the right sided limit will tell us something useful.

$$\lim_{x \to -1^{+}} f(x) = f(-1)$$

$$\lim_{x \to -1^{+}} ax+b = b(-1)^2-3$$

$$a(-1)+b=b-3$$

$$-a+b=b-3$$

$$-a=-3$$

$$a=3$$

So now we know that $f(x)$ will be continuous everywhere as long as $a=3$.  However, this doesn’t really tell us that $f(x)$ is differentiable everywhere as well.

## Making sure f(x) is differentiable everywhere

We now know that we will need to let $a=3$ in order for this function to be continuous and to have a chance of being differentiable.  As a result, we can say that we are now trying to make this function differentiable everywhere:

$$f(x) = \begin{cases} bx^2-3 & \mbox{if } x\leq -1 \\ 3x+b & \mbox{if } x>-1 \end{cases}$$

We can see that the only place this function would possibly not be differentiable would be at $x=-1$.  The reason for this is that each function that makes up this piecewise function is a polynomial and is therefore continuous and differentiable on its entire domain.  The only place we may have a problem is when we have to switch between the two functions.

#### What does it mean for a function to be differentiable?

It means that its derivative exists for all values of $x$.  In other words, we need to be able to find its derivative no matter what $x$ is.

However, as I mentioned above, in this case we really only need to make sure that we can find the derivative of $f(x)$ when $x=-1$ since we know it would exist for all other values of $x$.  By using the definition of a derivative, we need to make sure the following limit exists at $x=-1$.

$$\lim_{h \to 0} \frac{f(x+h)-f(x)}{h}$$

Since we need to check this when $x=-1$, we can plug in $-1$ for $x$.  Therefore, we need to make sure this limit exists:

$$\lim_{h \to 0} \frac{f(-1+h)-f(-1)}{h}$$

I went over this limit definition in greater detail previously.  If you want a refresher on where this is coming from you can find that by clicking here.

Just like when we had to find the limit to make sure that $f(x)$ was continuous, we will need to consider each one sided limit separately in order to find this limit.  And also like when we checked for continuity, each one sided limit is going to require the use of a different section of our piecewise function.

#### Setting up the limits

When $h$ is slightly less than $0$, and we are considering the left sided limit, $f(-1+h)$ would need to be found using the $y=bx^2-3$ because this would involve inputting $x$ values which are less than $-1$.

By the same reasoning, when $h$ is slightly greater than $0$, and we are considering the right sided limit, $f(-1+h)$ would need to be found using the $y=3x+b$ because this would involve inputting $x$ values which are greater than $-1$.  Therefore, we need to consider the following one sided limits:

$$\lim_{h \to 0^{-}} \frac{\Big[b(-1+h)^{2}-3\Big]-\Big[b(-1)^{2}-3\Big]}{h}$$

$$\lim_{h \to 0^{+}} \frac{\Big[3(-1+h)+b\Big]-\Big[b(-1)^{2}-3\Big]}{h}$$

#### Now what do we do with these limits?

Now remember, as I discussed in the lesson about one-sided limits, in order for a limit to exist we need both of its one-sided limits to exist and they need to be equal.  Therefore, in order to show that the derivative of $f(x)$ exists at $x=-1$, these two one-sided limits need to be equal to each other.  Before setting them equal to each other, first we’ll simplify them a bit.  First the left side limit.

$$\lim_{h \to 0^{-}} \frac{\Big[b(-1+h)^{2}-3\Big]-\Big[b(-1)^{2}-3\Big]}{h}$$

$$=\lim_{h \to 0^{-}} \frac{\Big[b(-1+h)(-1+h)-3\Big]-\Big[b(1)-3\Big]}{h}$$

$$=\lim_{h \to 0^{-}} \frac{\Big[b(1-2h+h^2)-3\Big]-\Big[b-3\Big]}{h}$$

$$=\lim_{h \to 0^{-}} \frac{\Big[b-2bh+bh^2-3\Big]-\Big[b-3\Big]}{h}$$

$$=\lim_{h \to 0^{-}} \frac{b-2bh+bh^2-3-b+3}{h}$$

$$=\lim_{h \to 0^{-}} \frac{bh^2-2bh}{h}$$

$$=\lim_{h \to 0^{-}} \frac{h(bh-2b)}{h}$$

$$=\lim_{h \to 0^{-}} bh-2b$$

$$=-2b$$

And now the right sided limit.

$$=\lim_{h \to 0^{+}} \frac{\Big[3(-1+h)+b\Big]-\Big[b(-1)^{2}-3\Big]}{h}$$

$$=\lim_{h \to 0^{+}} \frac{\Big[-3+3h+b\Big]-\Big[b(1)-3\Big]}{h}$$

$$=\lim_{h \to 0^{+}} \frac{-3+3h+b-b+3}{h}$$

$$=\lim_{h \to 0^{+}} \frac{3h}{h}$$

$$=\lim_{h \to 0^{+}} 3$$

$$=3$$

Now if we set these two simplified versions of the one-sided limits equal to each other, we get

$$-2b=3$$

$$b=-\frac{3}{2}$$

#### What does this tell us?

So now if we put both pieces together, we know that $a=3$ will ensure that $f(x)$ is continuous and then making $b=-\frac{3}{2}$ will also make sure $f(x)$ is differentiable at $x=-1$.  This would in turn make $f(x)$ differentiable for all values of $x$, or make it differentiable everywhere.

As always, I want to hear your questions!  Go check out my other lessons about derivatives and if you can’t get your question answered, I’d love to hear from you.  Leave a comment below or email me at jakesmathlessons@gmail.com.  If you have questions on this problem and solution or if you have another question you would like to see me answer, just ask it.  Or if you have an entire topic you would like to see me write a lesson about, just let me know.

Enter your name and email below and I will also send you my calculus 1 study guide as a FREE bonus as a welcome gift!

* indicates required

## Solution – Find two numbers whose sum is 23 and whose product is a maximum

Find two numbers whose sum is 23 and whose product is a maximum.

When you see a problem like this, it’s obvious our goal is to maximize some function.  The more challenging part is figuring out what the function would be that we want to maximize.  When we look at this problem however, we can actually break it down into two different facts we know about these two numbers, which we will call a and b.

• The two numbers add up to 23.
• We need to maximize their product.

Each of these two bullet points can actually be represented mathematically and they can be used together.

#### Fact #1

First of all, we know that these two numbers add up to 23.  Or in other words,

$$a+b=23.$$

#### Fact #2

Also, we need to maximize the product of these numbers.  Another way to put this is that we want to maximize the function f, which represents the product of a and b.  So we need to maximize

$$f(a, \ b)=ab.$$

#### Putting the two facts together

The problem with this, is that it is difficult to maximize multivariable functions, and in fact, this function wouldn’t have a maximum unless we go back to our other equation.  Since we know $a+b=23$, we can actually use this to rewrite the function we need to maximize in terms of only one variable.

$$a+b=23$$

$$a=23-b$$

Now since we know $a=23-b$, we can go to our function of a and b and replace each a with (23-b).  Doing this will give us a new function with only b‘s in it, which we can then maximize.

$$f(a, \ b)=ab$$

Replacing a with (23-b) gives us a new function which we’ll call g.

$$g(b)=(23-b)b$$

#### Maximizing the function to find a and b

Now we just need to find the value of b that maximizes g.  To do this, we just need to take its derivative with respect to b, set it equal to 0, and solve for bThis will always be the general process when you need to maximize or minimize a function.  But first I will expand the function so it’s easier to take its derivative.

$$g(b)=23b-b^2$$

$$g'(b)=23-2b$$

Now set this equal to 0 and solve for b.

$$0=23-2b$$

$$2b=23$$

$$b=\frac{23}{2}$$

We can even check this using Wolfram Alpha.  Below you can see a graph of $y=g(b)$ showing the maximum value at $b=\frac{23}{2}$.

Now remember, we needed to find the value of a and b that would maximize their product.  So we need to use $b=\frac{23}{2}$ to find a.  To do this, we can just use the relationship we found earlier:

$$a=23-b$$

$$a=23-\bigg(\frac{23}{2}\bigg)$$

$$a=\frac{46}{2}-\frac{23}{2}$$

$$a=\frac{23}{2}$$

So now we know that $a=\frac{23}{2}$ and $b=\frac{23}{2}$ are the two numbers whose sum is 23 and whose product is as large as possible.

There are plenty of other lessons and solutions to help you make sense of derivatives on my derivatives page.  Go check them out and as always, I’d love to here your questions!  Leave a comment below or email me at jakesmathlessons@gmail.com with any questions or suggestions you may have.  Every email and comment helps me gear this site toward what you want to see, so please don’t hesitate to reach out.

You can also enter your name and email below and I’ll send you my calcu 1 study guide full of useful tips and tricks to help you boost your test scores!