Limits to Infinity

Limits as x approaches infinity can be tricky to think about. This is because infinity is not a number that x can ever be equal to. To evaluate a limit as x goes to infinity, we cannot just simply plug infinity in for x and see what we get. As a result, things like \(\mathbf{e^{\infty}}\) and \(\mathbf{\frac{1}{\infty}}\) don’t actually have a value.

So how can we deal with infinity?

Although infinity doesn’t have a specific value and can’t be plugged into functions, we can think about what will happen to a given function as x approaches infinity.

All this really means is that x is continually getting infinitely large. And as x gets bigger and bigger and bigger, what y value will our function get closer and closer to?

Let’s look at a few common examples and what they mean.

One Divided by Infinity

Like I said before, infinity is not a value. Therefore, \(\frac{1}{\infty}\) isn’t an actual number and doesn’t have a value. However, what we want to think about is what y value 1/x will approach as x goes to infinity. This is exactly what is being asked when we see: $$\lim_{x \to \infty} \frac{1}{x}$$

So let’s think about what happens to 1/x when we plug in bigger and bigger numbers for x.

x\(\mathbf{\frac{1}{x}}\)
11
100.1
1000.01
1,0000.001
10,0000.0001
100,0000.00001
1,000,0000.000001
10,000,0000.0000001
100,000,0000.00000001

So you can see in the table above that as x gets bigger and bigger, 1/x gets closer and closer to 0. Or in other words,

as x approaches infinity, 1/x approaches 0

We would write this mathematically as: $$\lim_{x \to \infty} \frac{1}{x} = 0$$

We can also see this graphically using Mathway. Notice in the graph below that as the x value goes toward infinity, you can see the y value getting closer to the y-axis (y=0).

limit as x goes to infinity of 1/x

Limits Going to Infinity

The other common example I mentioned is the limit as x goes to infinity of \(\mathbf{e^x}\). Or $$\lim_{x \to \infty} e^x$$

Again, it doesn’t really make sense to say that we can just plug infinity in for x and get \(\mathbf{e^{\infty}}\). This doesn’t actually have a value. This isn’t a number. Instead, we want to think about what y value \(\mathbf{e^x}\) goes toward as x goes to infinity. So let’s look at what happens as we raise e to a larger and larger power.

x\(\mathbf{e^x}\)
12.718
27.389
454.598
6403.429
82,980.958
1022,026.466
1002.688 * \(\mathbf{10^{43}}\)

So we can see here that \(\mathbf{e^x}\) starts giving us very large numbers quite quickly. And as we continue to plug in larger values for x, \(\mathbf{e^x}\) will continue to get bigger and bigger and bigger.

as x approaches infinity, \(\mathbf{e^x}\) approaches infinity

We would write this mathematically as: $$\lim_{x \to \infty} e^x = \infty$$

Rational Functions

Finding the limit as x approaches infinity of rational functions is a common limit you will run into. This is important because this is how you find horizontal asymptotes of rational functions. You are just looking to see what y value your function will get really close to (without touching that value) as your x goes to infinity.

What is a rational function?

A rational function is a function that is a fraction where the top and bottom of the fraction are polynomials. Basically this just means that the numerator and denominator of the fraction will be a sum of a handful of terms that are a constant times x raised up to some power. So it will look like this: $$f(x)=\frac{a_nx^n + a_{n-1}x^{n-1} + … + a_2x^2 + a_1x + a_0}{b_mx^m + b_{m-1}x^{m-1} + … + b_2x^2 + b_1x + b_0}$$

How do you take the limit of a rational function?

There are really only 3 cases you need to consider and the video above discusses these three cases as well. Any rational function will fall into one of these three categories, and each limit within each category will work out the same.

All you need to do is look at the degree of the polynomial on the top and bottom of the fraction. The degree of a polynomial is the highest power that x is being raised to. So for example, \(\mathbf{y=-4x^5+6x^2+x-12}\) is a polynomial of degree 5, because the highest power of x is 5.

Case 1: Degree of numerator is larger than degree of denominator

If the degree of the numerator is higher than the degree of the polynomial on the denominator, then the limit will go to infinity or negative infinity. This will only depend on the sign of the coefficient of the highest power x term on the numerator.

If Degree(P(x)) > Degree(Q(x)), then \(\mathbf{\lim\limits_{x \to \infty} \frac{P(x)}{Q(x)}= \pm \infty}\)

Example:

$$\lim_{x \to \infty} \frac{x^4-3x^2+x}{x^3-x+2}$$ $$=\lim_{x \to \infty} \frac{x^4-3x^2+x}{x^3-x+2} \cdot \frac{\frac{1}{x^3}}{\frac{1}{x^3}}$$ $$=\lim_{x \to \infty} \frac{\frac{x^4}{x^3}-\frac{3x^2}{x^3}+\frac{x}{x^3}}{\frac{x^3}{x^3}-\frac{x}{x^3}+\frac{2}{x^3}}$$ $$=\lim_{x \to \infty} \frac{x-\frac{3}{x}+\frac{1}{x^2}}{1-\frac{1}{x^2}+\frac{2}{x^3}}$$ $$= \frac{\lim\limits_{x \to \infty}x-\lim\limits_{x \to \infty}\frac{3}{x}+\lim\limits_{x \to \infty}\frac{1}{x^2}}{\lim\limits_{x \to \infty}1-\lim\limits_{x \to \infty}\frac{1}{x^2}+\lim\limits_{x \to \infty}\frac{2}{x^3}}$$ $$= \frac{\lim\limits_{x \to \infty}x-0+0}{1-0+0}$$ $$=\frac{\lim\limits_{x \to \infty}x}{1}$$ $$=\lim_{x \to \infty}x$$ $$=\infty$$

Case 2: Degree of numerator is smaller than degree of denominator

If the degree of the numerator is smaller than the degree of the denominator then the limit will go to 0.

If Degree(P(x)) < Degree(Q(x)), then \(\mathbf{\lim\limits_{x \to \infty} \frac{P(x)}{Q(x)}= 0}\)

Example:

$$\lim_{x \to \infty} \frac{16x^4}{0.0001x^5+18x}$$ $$=\lim_{x \to \infty} \frac{16x^4}{0.0001x^5+18x} \cdot \frac{\frac{1}{x^5}}{\frac{1}{x^5}}$$ $$=\lim_{x \to \infty} \frac{\frac{16x^4}{x^5}}{\frac{0.0001x^5}{x^5}+\frac{18x}{x^5}}$$ $$=\lim_{x \to \infty} \frac{\frac{16}{x}}{0.0001+\frac{18}{x^4}}$$ $$= \frac{\lim\limits_{x \to \infty}\frac{16}{x}}{\lim\limits_{x \to \infty}0.0001+\lim\limits_{x \to \infty}\frac{18}{x^4}}$$ $$= \frac{0}{0.0001+0}$$ $$=0$$

Case 3: Degree of numerator is equal to degree of denominator

If the degree of the numerator is equal to the degree of the denominator then the limit will be equal to the coefficient of the highest power x term in the numerator divided by the coefficient of the highest power x term in the denominator.

If Degree(P(x)) = Degree(Q(x)), then \(\mathbf{\lim\limits_{x \to \infty} \frac{P(x)}{Q(x)}= \frac{a}{b}} \ \) where a is the coefficient of the highest power x term in P(x), and b is the coefficient of the highest power x term in Q(x).

$$\lim_{x \to \infty} \frac{x^2+7}{-3x^2}$$ $$=\lim_{x \to \infty} \frac{x^2+7}{-3x^2} \cdot \frac{\frac{1}{x^2}}{\frac{1}{x^2}}$$ $$=\lim_{x \to \infty} \frac{\frac{x^2}{x^2} + \frac{7}{x^2}}{\frac{-3x^2}{x^2}}$$ $$=\lim_{x \to \infty} \frac{1 + \frac{7}{x^2}}{-3}$$ $$= \frac{\lim\limits_{x \to \infty}1 + \lim\limits_{x \to \infty}\frac{7}{x^2}}{\lim\limits_{x \to \infty}-3}$$ $$= \frac{1+0}{-3}$$ $$=-\frac{1}{3}$$

Other Examples

\(\mathbf{\lim\limits_{x \to \infty} arctan \big( e^x \big)}\) | Solution

\(\mathbf{\lim\limits_{x \to \infty} \frac{sin(x)}{x}}\) | Solution

\(\mathbf{\lim\limits_{x \to \infty} \frac{ln(x)}{\sqrt{x}}}\) | Solution

Solutions

Example 1 Solution

\(\mathbf{\lim\limits_{x \to \infty} arctan \big( e^x \big)}\)

This is going to be based on the fact that we already discussed above that \(\mathbf{\lim\limits_{x \to \infty} e^x = \infty}\). Since we know that, we can say that \(\mathbf{y=e^x}\) and rewrite our limit as: $$\lim_{y \to \infty} arctan(y)$$

This is because y goes to infinity as x goes to infinity since \(\mathbf{y=e^x}\). Now we can find this limit by looking at a graph of y=arctan(x).

limit as x approaches infinity of arctan(x) or tan^{-1}(x)

Looking at this graph we can see that y=arctan(x) has a horizontal asymptote at \(\mathbf{y=\frac{\pi}{2}}\). As x goes toward infinity, you can see that the y value of our function gets closer and close to \(\mathbf{\frac{\pi}{2}}\). So this tells us $$\lim_{y \to \infty} arctan(y)=\frac{\pi}{2}$$ $$\lim_{x \to \infty} arctan \big( e^x \big)=\frac{\pi}{2}$$

Example 2 Solution

\(\mathbf{\lim\limits_{x \to \infty} \frac{sin(x)}{x}}\)

This one is going to use Squeeze Theorem. Click here to learn more about Squeeze Theorem and its required conditions if you don’t already know about them, then come back to this problem.

We know that \(\mathbf{-1 \leq sin(x) \leq 1}\) for all x. Since we are looking at this limit as x goes to positive infinity, we can also say that $$-\frac{1}{x} \leq \frac{sin(x)}{x} \leq \frac{1}{x}$$

We also know that \(\mathbf{\lim\limits_{x \to \infty} -\frac{1}{x}=0}\) and that \(\mathbf{\lim\limits_{x \to \infty} \frac{1}{x}=0}\). Since we know \(\mathbf{\frac{sin(x)}{x}}\) is between \(\mathbf{-\frac{1}{x}}\) and \(\mathbf{\frac{1}{x}}\) we can use Squeeze Theorem to say that $$\lim_{x \to \infty} \frac{sin(x)}{x}=0$$

Example 3 Solution

\(\mathbf{\lim\limits_{x \to \infty} \frac{ln(x)}{\sqrt{x}}}\)

For this limit, we will be able to use L’Hospital’s Rule. This is because ln(x) and \(\mathbf{\sqrt{x}}\) both go to infinity as x goes to infinity. This gives us an indeterminate form that is a possible application of L’Hospital’s Rule. We can also check to make sure that this meets the other conditions needed to apply L’Hospital’s Rule.

$$\lim_{x \to \infty} \frac{ln(x)}{\sqrt{x}}$$ $$=\lim_{x \to \infty} \frac{\frac{d}{dx}ln(x)}{\frac{d}{dx}\sqrt{x}}$$ $$=\lim_{x \to \infty} \frac{\frac{1}{x}}{\frac{1}{2x^{1/2}}}$$ $$=\lim_{x \to \infty} \frac{1}{x} \cdot \frac{2x^{1/2}}{1}$$ $$=\lim_{x \to \infty} \frac{2}{x^{1/2}}$$ $$=\lim_{x \to \infty} \frac{2}{\sqrt{x}}$$ $$=0$$

LIMIT PROPERTIES – Examples of using the 8 properties

I’ve already talked a bit about limits and one-sided limits and how to evaluate them, especially using the graph of the functions. But most limits that you need to evaluate won’t come with a graph and may be challenging to graph. In cases like these, you will want to try applying the 8 basic limit properties.

Using the limit properties is the simplest way to evaluate limits. Therefore, applying limit properties should be a good starting place for most limits. These properties can be applied to two-sided and one-sided limits.

First I will go ahead and list the 8 limit properties then I will show you a handful of examples that show how to apply these limits. These are the same 8 limit properties that are listed on my calculus 1 study guide. If you haven’t already, click here to download my calculus 1 study guide so you can have these limit properties handy as you work through evaluating limits with them.

What are the 8 limit properties?

\(\mathbf{1. \ \ \lim\limits_{x \to a} c = c} \)

Taking the limit of a constant just results in that constant.

\(\mathbf{2. \ \ \lim\limits_{x \to a} x = a} \)

The limit of the variable alone will go toward the value that the variable is approaching as given in the limit. This is a result of the fact that \(y=x\) is a continuous function.

\(\mathbf{3. \ \ \lim\limits_{x \to a} \Big( cf(x) \Big) = c \cdot \lim\limits_{x \to a} f(x)} \)

Having a constant being multiplied by the entire function within the limit can be pulled out of the limit. This will allow you to evaluate the simpler function, then multiply the result by that constant after evaluating a slightly simpler limit.

\(\mathbf{4. \ \ \lim\limits_{x \to a} \Big( f(x) \pm g(x) \Big) = \lim\limits_{x \to a} f(x) \pm \lim\limits_{x \to a} g(x)} \)

The limit of a sum or difference can instead be written as the sum or difference of their individual limits.

\(\mathbf{5. \ \ \lim\limits_{x \to a} \Big( f(x) \cdot g(x) \Big) = \lim\limits_{x \to a} f(x) \cdot \lim\limits_{x \to a} g(x)} \)

The limit of a product can instead be written as the product of their individual limits.

\(\mathbf{6. \ \ \lim\limits_{x \to a} \Big( \frac{f(x)}{g(x)} \Big) = \frac{\lim\limits_{x \to a} f(x)}{\lim\limits_{x \to a} g(x)}, \ \ if \ \lim\limits_{x \to a} g(x) \neq 0} \)

Taking the limit of a quotient can be rewritten as the quotient of those two limits. Just make sure that the limit of the denominator isn’t zero. If it is, then this will result in dividing by zero, which you can’t do.

\(\mathbf{7. \ \ \lim\limits_{x \to a} \Big( f(x) \Big)^n = \Big( \lim\limits_{x \to a} f(x) \Big)^n} \)

Taking the limit of some function raised to a constant power can be rewritten to evaluate the limit of the inner function then raise the result to that constant power.

\(\mathbf{8. \ \ \lim\limits_{x \to a} \Big( \sqrt[\leftroot{-3}\uproot{3}n]{f(x)} \Big) = \sqrt[\leftroot{-3}\uproot{3}n]{\lim\limits_{x \to a} f(x)}} \)

Similar to the last property, but the same can be done with a function that is within a root. This can be applied to any constant root (eg. square root, cube root, etc.)

How can these limit properties be applied to evaluate limits?

These 8 properties of limits can be used to simplify limits and break them down into smaller pieces. Each of these smaller pieces would be easier to deal with. Then once you evaluate these smaller, simpler limits you can put them all together.

We will go ahead and show how to apply these limit properties with some examples. To the right of each step in parenthesis, I will put a number corresponding to the property from above that was used to get to that step from the previous one. If multiple properties were applied at the same time I will list all properties used in that step in the parenthesis.

Example 1

$$\lim_{x \to 5} 6x^4 – 2x + 7$$ $$= \ \lim_{x \to 5} 6x^4 – \lim_{x \to 5} 2x + \lim_{x \to 5} 7 \ \ \ \ (4)$$ $$= \ 6 \lim_{x \to 5} x^4 – 2 \lim_{x \to 5} x + \lim_{x \to 5} 7 \ \ \ \ (3)$$ $$= \ 6 \Big( \lim_{x \to 5} x \Big)^4 – 2 \lim_{x \to 5} x + \lim_{x \to 5} 7 \ \ \ \ (7)$$ $$= \ 6 (5)^4 – 2(5) + 7 \ \ \ \ (1, \ 2)$$ $$= \ 3,747$$

Example 2

$$\lim_{x \to 2} \Big( (x+2) \sqrt[\leftroot{-1}\uproot{3}3]{x^2 + 7x} \Big)$$ $$= \ \lim_{x \to 2}(x+2) \cdot \lim_{x \to 2}\sqrt[\leftroot{-1}\uproot{3}3]{x^2 + 7x} \ \ \ \ (5)$$ $$= \ \Big( \lim_{x \to 2}x+ \lim_{x \to 2}2 \Big) \cdot \lim_{x \to 2}\sqrt[\leftroot{-1}\uproot{3}3]{x^2 + 7x} \ \ \ \ (4)$$ $$= \ (2+2) \cdot \lim_{x \to 2}\sqrt[\leftroot{-1}\uproot{3}3]{x^2 + 7x} \ \ \ \ (1, \ 2)$$ $$= \ 4 \lim_{x \to 2}\sqrt[\leftroot{-1}\uproot{3}3]{x^2 + 7x}$$ $$= \ 4 \sqrt[\leftroot{1}\uproot{3}3]{\lim_{x \to 2} \Big(x^2 + 7x \Big)} \ \ \ \ (8)$$ $$= \ 4 \sqrt[\leftroot{1}\uproot{3}3]{\lim_{x \to 2} x^2 + \lim_{x \to 2} 7x} \ \ \ \ (4)$$ $$= \ 4 \sqrt[\leftroot{1}\uproot{3}3]{\Big( \lim_{x \to 2} x \Big)^2 + 7 \lim_{x \to 2} x} \ \ \ \ (7, \ 3)$$ $$= \ 4 \sqrt[\leftroot{1}\uproot{3}3]{(2)^2 + 7(2)} \ \ \ \ (2)$$ $$= \ 4 \sqrt[\leftroot{-1}\uproot{1}3]{18}$$

Example 3

$$\lim_{x \to 4} \frac{x}{28}$$ $$= \ \frac{\lim\limits_{x \to 4} x}{\lim\limits_{x \to 4} 28} \ \ \ \ (6)$$ $$= \ \frac{4}{28} \ \ \ \ (1, \ 2)$$ $$= \ \frac{1}{7}$$

Conclusion

As you can see, each of these properties can be applied to fairly complex limits to break them down into smaller, simpler pieces. Each will usually end in applying one of the first two properties listed above to convert a limit into some number. And in the end, you will end up converting all of the limits into numbers. At that point, you will be able to manipulate everything with simple algebra to simplify your answer.

If you’d like to get your own copy of my FREE STUDY GUIDE, you can get yours by clicking here. And check out and subscribe to my YouTube Channel as well for video versions of other topics that I have posted lessons about as well.